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BBacteria, viruses, fungi, archaea, helminths, 
and protozoa that inhabit our body are a 
prospering dynamic community shaping a 
symbiotic superorganism. Roughly 1,014 
microbiota populate the entire body, with their 
number approximating that of human cells.1,2 
Evidence suggests that microbiota take part in 
maintaining human health.3,4

As a crucial barrier to the exterior world, skin is 
the body’s largest organs.5 A square centimeter of 
human skin holds around 106 of microbiota.6–8 The 
symbionts defend against illness by regulating 
the skin barrier and host immune response.9,10 On 
the other hand, microbial imbalance (dysbiosis) 
has been noted to exacerbate skin lesions and 
delay wound healing.11,12 Recently, the emerging 
role of the skin microbiota in itch has received 
attention.13 Large-scale changes of the skin 
microbiota have been noted in itchy skin diseases. 
Staphylococcus aureus (S. aureus) participates in 
atopic dermatitis (AD) flare-up; its colonization 
correlates with disease severity and itch.14–16

In the present review, we offer an integrative 
perspective on the skin microbiota and itch. 
The first section describes the interplay of the 
cutaneous microbiota with the epidermal barrier, 
the local immune system, and the sensory nerve, 
proposing the microbiota’s peripheral mechanism 
of itch. The second section concentrates on the 
concept of microbial endocrinology and addresses 
the microbiota–skin–brain axis. Moreover, the 
interaction between the skin microbiota and the 

amygdala is discussed to explain the microbiota’s 
central mechanism of itch. Overall, this article 
describes the putative role of the skin microbiota 
in itch. 
 
THE PERIPHERAL MECHANISM LINKING THE 
SKIN MICROBIOTA AND ITCH

Itch arises from the activation of epidermal 
nerve fibers that belong to a specialized class 
of itch-provoking neurons (“pruriceptors”).    
The chemical mediators that drive neuronal 
activity arise from complex interaction between 
keratinocytes, inflammatory cells, and nerve 
endings, coupled with upregulated immune 
cascades, epidermal barrier dysfunction, 
and exogenous environmental stimuli (e.g., 
microbiota, allergens, irritants).17 Peripheral 
nerves relay cues from the skin to the dorsal root 
and trigeminal ganglia and then to the spinal 
cord and brain where central itch processing takes 
place (Figure 1).17 

Skin barrier. The skin barrier shields the 
body from a wide range of external dangers.18 
It consists of the epidermis and several layers 
below that harbor microbiota.19–21 The physical 
skin barrier is the stratum corneum, which 
comprises dead keratinocytes and proteinaceous 
crosslinking filaments.22

The skin also has a chemical barrier of 
antimicrobial peptides (AMPs) that are 
constitutively expressed or induced. AMPs directly 
block microbial growth or provoke the immune 
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Itch is an unpleasant sensation that emanates 
primarily from the skin. The chemical
mediators that drive neuronal activity originate 
from a complex interaction between keratinocytes, 
inflammatory cells, nerve endings, and the skin 
microbiota, relaying itch signals to the brain. 
Stress also exacerbates itch via the skin-brain 
axis. Recently, the microbiota has surfaced as 
a major player to regulate this axis, notably 
during stress settings aroused by actual or 
perceived homeostatic challenge. The routes of 
communication between the microbiota and 
brain are slowly being unraveled and involve 
neurochemicals (i.e., acetylcholine, histamine, 
catecholamines, and corticotropin) that originate 
from the microbiota itself. By focusing on itch 
biology and by referring to the more established 
field of pain research, this review examines the 
possible means by which the skin microbiota 
contributes to itch. 
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reaction. One example is the liberation of 
histamine and prostaglandin D2 (PG-D2)23 by mast 
cells in respect to human β-defensins (hβDs) and 
LL-37, causing pruritus.

The skin microbiota is an integral part of the 
skin barrier.18 It protects the host from pathogens 
by competing for nutrients and space.19 Some 
produce antimicrobial compounds that block 
the growth of competitors.19 Symbionts also 
alter the skin barrier via bacterial enzymes, 
such as proteases, which impact corneocyte 
desquamation, and lipases, which break down 
skin surface lipids.24

Staphylococcus epidermidis (S. epidermidis) 
is the primary bacterium colonizing the human 
epithelia and is a vital member of the skin 
resident microbiota.25 S. epidermidis has a flexible 
interrelation with its host and deposits biofilms 
(a physical barrier) that are remarkably hard 
to clear.26 Symbiont strains of S. epidermidis 
suppress S. aureus biofilm formation by producing 
serine protease (Esp), which also enhances the 
antimicrobial effect of hβDs.27 Another typical 
skin resident is Cutibacterium acnes (C. acnes), 
which inhibits the growth of methicillin-resistant 
S. aureus (MRSA).28 In short, C. acnes ferments 
glycerol, a natural metabolite in human skin, into 

short-chain fatty acids (SCFAs) that maintain an 
acidic skin pH.29 Symbionts flourish at acidic pH, 
whereas potential pathogens, such as S. aureus, 
thrive at neutral pH.30,31

Intrinsic (host) and extrinsic (environmental) 
factors affect skin barrier function by shaping 
microbial structure.32 S. aureus colonization is 
found in up to 90 percent of patients with AD.33 
It produces ceramidase, which breaks down 
ceramides, an essential component of the skin 
barrier.34 S. aureus also produces toxins that 
impede wound healing and bring epithelial 
barrier disintegration.35 Scabies mites (Sarcoptes 
scabiei) alter the skin microbiota by breaching the 
physical barrier.Epidemiologic studies in patients 
with scabies confirmed secondary bacterial 
infections by two clinically important pathogens 
S. aureus and Streptococcus pyogenes.36

Lately, there has been a growing awareness of 
fungi and their interaction with the skin barrier.
When the chemical composition (e.g., sweat, pH) 
of the host epidermis is disturbed, Malassezia spp. 
acquire pathogenicity and liberate an array of 
bioactive indoles, lipases, and phospholipases.37 
These molecules further modify the function of 
the skin barrier.

Epithelial barrier disruption opens the door 

into a vicious itch–scratch cycle.38,39 Upon damage 
or stress, keratinocytes and skin microbiota emit 
cytokines, AMPs, and proteases that activate 
immunocytes and nerves.38,40,41 Protease-
activated receptors (PARs), which are cleaved by 
serine proteases, manifest on different cell types, 
including sensory neurons and mediate itch.42–45 
β-defensin, an AMP released from epithelial cells, 
has the ability to stimulate IL-31 production by 
mast cells.46 IL-31, initially discovered in 2004, is 
the first cytokine that is known to facilitate itch by 
directly operating on sensory neurons (Figure 1).47 

The immune system. Skin is flushed with 
a wide scope of cells of the innate and adaptive 
immune system. The skin microbiota keeps 
immune homeostasis19 by modulating the 
expression of diverse innate factors, including 
AMPs, interleukin 1a (IL-1a),48 and complement.49 
Symbionts calibrate inflammation.50,51 S. 
epidermidis suppresses inflammation by inducing 
IL-10, an anti-inflammatory cytokine, from 
antigen-presenting cells (APCs).52 The Toll-
like-receptor (TLR)-2-facilitated recognition of 
lipoteichoic acid (LTA) from S. epidermidis inhibits 
TLR-3-driven inflammatory cytokine production 
in cultured keratinocytes (Table 1). This also 
reduces inflammation in wounds, which, when 
uncontrolled, is damaging to the host.52 Finally, 
S. epidermidis can finely tune the response of 
resident T cells and promote selective immunity 
against skin pathogens.57

Alteration in the normal makeup of the skin 
microbiota can induce inflammation. Moreover, 
the constitution of the cutaneous microbiota can 
shift dramatically in the course of inflammation.14 
For example, AD flares have been associated with 
an expansion of staphylococcal species, which can 
lead to an overall decrease in microbial diversity.14 
The resulting bacterial and viral infection can 
cause itch. One possible mechanism of itch from S. 

FIGURE 1.  Inflammatory circuit of the skin microbiota. Various microbiota (bacteria, fungi and viruses) cover the exterior 
of a healthy skin where the barrier is intact. In the event of dysbiosis, pathogens release proteases, which may disrupt the 
epidermal barrier. Delta-toxin causes mast cell degranulation, which prompt inflammation and itching. AMP: antimicrobial 
peptides; DRG: dorsal root ganglia; IL: interleukin; LTB4: leukotriene B4; PAMP: pathogen associated molecular pattern; PGE2: 
prostaglandin E2; TLR: Toll-like receptor; TRPA1: transient receptor potential antigen 1; TSLP: thymic stromal lymphopoietin.
Figure 1. Inflammatory circuit of the skin microbiota. Various microbiota (bacteria, fungi and viruses) cover the exterior of 
a healthy skin where the barrier is intact. In the event of dysbiosis, pathogens release proteases, which may disrupt the 
epidermal barrier. Delta-toxin causes mast cell degranulation, which prompt inflammation and itching. AMP: antimicrobial 
peptides; DRG: dorsal root ganglia; IL: interleukin; LTB4: leukotriene B4; PAMP: pathogen associated molecular
pattern; PGE2: prostaglandin E2; TLR: Toll-like receptor; TRPA1: transient receptor potential antigen 1; TSLP: thymic stromal 
lymphopoietin.

TABLE 1. Interaction between the skin microbiota and the Toll-like 
receptors (TLRs).

BACTERIA INTERACTIONS WITH TLRS

S. epidermidis 

Adjusts TLR3-dependent inflammation by 
introducing a TLR2-mediated crosstalk to subdue 
inflammation.52

Elicits keratinocytes to display AMPs through a 
TLR2-dependent mechanism.50

S. aureus

Induction of hBD3 gene expression is TLR2-
dependent.53

Lipoteichoic acid and bacterial lipoproteins act as 
TLR2/2 or TLR2/6 agonists.54,55

P. acnes
Colonizes sebaceous glands and stimulates 
keratinocytes to release inflammatory cytokines via
TLR2 activation.56
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aureus infection is mast cell-mediated pruriceptor 
stimulation. Nunez et al58 discovered that S. 
aureus releases delta-toxin, an amphipathic 
peptide that stimulates chemical release from 
mast cells and mediates skin pathology in AD. 
Serine protease from S. aureus is also involved in 
type-2 inflammation and itch.16,59

Varicella zoster virus (VZV) causes pruritus in 
chickenpox by mast-cell-derived histamine.60 
Keratinocytes first detect pathogens and initiate 
an immune response.61 Keratinocytes identify an 
array of microbial ligands via Toll-like receptors 
(TLRs) exhibited on their surface.62–64 In response 
to stimulation, keratinocytes produce alarmins 
or epithelial cell-derived cytokines (i.e., IL-33, 
thymic stromal lymphopoietin [TSLP]),65 which 
potentiate innate and adaptive immunity.61 TSLP 
also acts upon a subdivision of TRPA1 sensory 
neurons to spark itch.65

Mast cells are also an essential element of 
innate immunity. Mast cells recognize pathogens 
via pathogen-associated molecular pattern 
(PAMP) receptors (e.g., TLR) on their surface.66 
Once they detect pathogens, inflammatory 
mediators are released to attract other immune 
cells.67,68 Downstream of IL-33 and TSLP, mast 
cells, neutrophils, basophils, eosinophils, T 
helper-2 (TH2) cells, and macrophages generate 
cytokines (IL-4, IL-13, IL-31), histamine, 
proteases, serotonin (5-HT), lipids, S100 proteins, 
prostaglandin E2 (PG-E2), leukotriene B4 (LT-B4), 
and growth factors.69–71 Recognizing these pro-
inflammatory molecules via TRPV1 and TRPA1 
channels leads to potential propagation across 
the afferent itch pathway.72

TH2 immunity is dominant in scabies and is 
complemented by a heavy inflow of IL-31(+) M2 
macrophages.73 Proteases from scabies mite stir 
epidermal keratinocytes to express TSLP. TSLP 
activates TH2 cells and induces M2 macrophages to 
produce IL-31, causing severe itch.74 The antigens 
of S. aureus have also been reported to induce 
IL-31 in individuals with AD.75

The sensory nerve. The skin is one of the 
human body's first lines of defense against 
microbial threats. Though the immune system is 
an essential component of cutaneous immunity, 
it is evident that the sensory nervous system 
also plays an important role in host defense. 
By evoking the sensation of itch, the host can 
immediately sense danger and rapidly initiate a 
protective behavioral response.69

A network of high- and low-threshold sensory 
nerves innervates the skin and is frequently 

exposed to bacterial pathogens (Figure 2). 
Pruriceptor neurons express cytokine receptors 
and G protein-coupled receptors that recognize 
immune mediators.76 While it is understood that 
microbial inflammation propagates itch, how the 
skin microbiota directly triggers sensory nerves is 
a new area of inquiry. The latest studies suggest 
that sensory neurons (e.g., immune cells) are able 
to detect microbiota.13,69,76,77 Ji et al78 reported 
TLR7 on pruriceptors and noted synthetic TLR7 
ligands (i.e., imiquimod) causing itch behavior 
in mice.78 TLR3 is also displayed by pruriceptors, 
where Polyl:C, a TLR3 ligand, stimulates neuronal 
activity and itch.79 Viral single-stranded RNA 
and doublestranded RNA are known pathogen-
derived ligands for TLR7 and TLR3, respectively, 
and there is a possibility that these viral ligands 
cause itch by directly interacting with pruriceptor 
neurons.76

Lipopolysaccharide (LPS), an important 
component of the Gram-negative bacteria 
outer membrane binds to TLR4.80 Although LPS 
has only been reported with pain,81 it can also 
modulate itch since TLR4 promotes histamine-
mediated itch.82 Interestingly, LPS has also 
been found to stimulate sensory neurons in an 

TLR4-independent manner, via the activation of 
TRPA1.83,84

Pruriceptor neurons express cytokine receptors 
and G protein-coupled receptors that recognize 
immune mediators.76 While we understand that 
microbial inflammation propagates itch, how the 
skin microbiota directly triggers sensory nerves is 
a new area of inquiry.

The latest studies suggest that sensory 
neurons, like immune cells, are able to detect 
microbiota.13,69,76,77 Ji et al78 noted Toll-like receptor 
7 (TLR7) on pruriceptors and synthetic TLR7 
ligands (e.g., imiquimod) causing itch behavior 
in mice.78  TLR3 is also displayed by pruriceptors, 
where Polyl:C, a TLR3 ligand, stimulates 
neuronal activity and itch.79 Viral single-stranded 
ribonucleic acid (RNA) and double-stranded RNA 
are known pathogen-derived ligands for TLR7 
and TLR3, respectively, and there is a possibility 
that these viral ligands cause itch by directly 
interacting with pruriceptor neurons.76

Lipopolysaccharide (LPS), an important 
component of the Gram-negative bacteria 
outer membrane, binds to TLR4.80 Although 
LPS has only been reported with pain,81 it can 
also modulate itch due to TLR4's promotion of 

FIGURE 2.  Pruriceptor neurons recognize skin pathogens and their molecular ligands by various mechanisms to 
facilitate itch. LPS, a key cell wall component of Gram-negative bacteria attaches to neuronal TLR4 and primes TRPV1 
ion channel or opens the TRPA1 ion channel. S. aureus triggers itch with bacterial N-formyl peptides that bind to FPR1 
or via α-hemolysin, which couples with ADAM10. C. albicans stimulates pruriceptors with its cell wall component 
zymosan. Viral double-strand RNA and single-strand RNA bind to TLR3 and TLR7, respectively, which are believed to 
sensitize the TRPA1 ion channel. ADAM10: a disintegrin and metalloproteinase domain-containing protein 10;
FPR1: formyl peptide receptor 1; LPS: lipopolysaccharide; RNA: ribonucleic acid; TLR: Toll-like receptor; TRPA1: transient 
receptor potential ankyrin 1; TRPV1: transient receptor potential vanilloid 1.
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histamine-mediated itch.82 Interestingly, LPS has 
also been found to stimulate sensory neurons in 
an TLR4-independent manner, via the activation 
of TRPA1.83,84 

Besides TLR ligands, sensory neurons detect 
pathogens through various molecular means. 
Specifically, zymosan from Candida albicans,85 
N-formylated peptides and α-hemolysin from S. 
aureus,86 and streptolysin S from S. pyogens87 were 
shown to mediate pain through direct neuronal 
stimulation. It remains to be discovered whether 
pruriceptors similarly detect these pathogens to 
elicit itch.

Itch is bothersome in patients with cholestatic 
liver disease.88 Recently, alteration of the skin 
microbiota was identified in patients with 
cirrhosis where specified microbial taxa correlated 
with itch severity and serum autotaxin (ATX) 
level.89 Lysophosphatidic acid (LPA), a powerful 
neuronal activator, and ATX (ectonucleotide 
pyrophosphatease/ phosphodiesterase 2), the 
enzyme that creates LPA, are pruritogens in 
cholestasis.90,91 It has been suggested that LPA 
directly activates TRPV1 on peripheral sensory 
neurons to mediate itch.92

 Neuroimmune conversation is bidirectional in 

itch. Sensory neurons are sensitized by immune 
cell-made cytokines, such as TNF-α and IL-1β; 
chemicals, such as histamine; and lipid mediators, 
such as prostaglandins; which phosphorylate ion 
channels and lower the bar of action potential 
firing. Neurons, in turn, secrete neuropeptides 
(e.g., calcitonin gene-related peptide, substance 
P) that modulate immune cell function93,94 and 
microbial virulence,95–97 causing itch.98 Because 
neurons will respond within milliseconds to 
danger, the sensory nervous system is likely the 

body's first detector of pathogen invasion and the 
prime orchestrator of itch.76 
 
THE CENTRAL MECHANISM LINKING THE SKIN 
MICROBIOTA AND ITCH  
     Microbial endocrinology. Microbial 
endocrinology is a combination of two 
distinct areas of study—microbiology and 
neurobiology—and is based on the shared 
presence of neurochemicals in the host and 
the microbiota.66 The scope of neurochemicals 
and the variety of microbiota in which they 
have been discovered is expansive,99 including 
acetylcholine,100,101 histamine,102,103 serotonin,104 
catecholamines,105,106 and agmatine,107,108 
which are essential elements of an animal’s 
nervous system. Others, such as corticotropin,109 
somatostatin,110 and progesterone,111 have 
biological action in mammalian cells. The ability 
of the microbiota to not only respond to but 
also create the very same neurochemicals found 
in mammalian systems indicates that host 
interplay with its microbiota is more interactive 
than was prev iously thought. Hence, microbial 
endocrinology could potentially be applied 
beyond the study of infectious disease to other 
conditions, such as neurological disease, through 
the microbiota–skin–brain axis. Microbiota 
has multiple transmission pathways to access 
the brain, including the neural signals carried 
by the afferent neurons, endocrine messages 
transmitted by neurochemicals, and the immune 
response messages transferred by cytokines.112,113 
Supporting cutaneous microbiota improves the 
skin's barrier functioning and local immune 
system and assists in its communication with 
other organ systems, including the brain 
(microbiota–skin–brain axis).114

Stress. Stress is a complex, dynamic event 

FIGURE 3.  Brain to microbiota communication under chronic stress. The HPA axis is activated under chronic stress. The 
final product of the HPA axis, cortisol, directly activates skin microbes. Cortisol activates the amygdala, promoting central 
sensitization to itch. The amygdala also promotes CRH signaling to the brain stem (PAG), altering the “descending itch 
modulatory system”. Prolonged exposure to cortisol, NE, and ACTH is associated with increased growth and biofilm genesis 
and augmented virulence of the skin microbiota. Ach: acetylcholine; ACTH: adrenocorticotropic hormone; CRH: corticotropin-
releasing-hormone; HPA: hypothalamic–pituitary–adrenal axis; 5-HT: serotonin; NE: norepinephrine; PNS: parasympathetic 
nervous system; RVM: rostral ventromedial medulla; SNS: sympathetic nervous system; VLPAG: ventrolateral periaqueductal 
grey matter.

TABLE 2. Effects of stress mediators on the skin microbiota.

BACTERIA EFFECTS OF STRESS MEDIATORS

Staphylococcus epidermidis
Glucocorticoids decrease the effects of super antigen activated T cells and inhibit staphylococcal exotoxin-induced T 
cell proliferation, cytokine secretion.137  
Catecholamines induce biofilm growth.130

Propionibacterium acnes Cortisol and steroids significantly exacerbate inflammation associated with P. acnes via TLR2 stimulation.138,139

Pseudomonas aeruginosa 
Norepinephrine increases expression of the attachment factor PA-1 of P. aeruginosa and increase biofilm  
formation.135,138

Staphylococcus aureus
Acetylcholine augments susceptibility to infection by S. aureus.124  
Norepinephrine increases S. aureus’ ability to remove iron from host and therefore facilitates the bacteria to form 
biofilms.138,140

Group A Streptococcus

Cortisol alters vulnerability to Group A Streptococcus pyogenes skin infection.141

Acetylcholine augments susceptibility to infection by Group A Streptococcus.124

Catecholamines raise Staphylococcal growth by 5-log orders.130–132

Catecholamines enhance Group A Streptococcus growth likely by increasing iron availability.138,142

Candida Estrogen enhances Candida infectivity, switching yeast form to an invasive hyphae.143
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that alters the body's homeostasis and illicits a 
response in the host. Stress can aggravate itch,115–

117 which indicates that the brain is engaged in 
the final common stage of itch processing.118,119 
The stress response by the central nervous 
system (CNS) can alter the microbiota via the 
release of neurochemicals.120,121 Glucocorticoids, 
essential components of the stress response, 
repress AMP release/localization in the epidermis, 
weaken the barrier, and raise host susceptibility 
to infection.122–124 Chronic stress is associated 
with an aberrant parasympathetic tone (Figure 
3).125,126 Cholinergic signaling from physiologic 
stress125 can negatively impact the skin barrier 
and immunity.127,128 Cathelicidin and β-defensins, 
AMPs important for innate immunity, are cut 
down after α7nAChR stimulation,128,129 leading 
to bacterial dissemination (Figure 3).127,128 Skin 
microbiota, especially the coagulase-negative 
staphylococci, are sensitive to catecholamines. 
Norepinephrine (NE), epinephrine, dopamine, and 
their structurally related inotropes (dobutamine 
and isoprenaline) raise staphylococcal growth 
by 5-log orders or more.130–132 Catecholamines 
also strengthen bacterial attachment to host 
tissues and increase bacteria virulence.130,133,134 
Catecholamines stimulate the biofilm formation 
of Pseudomonas aeruginosa (P. aeruginosa) and 
Escherichia coli (E. coli).124,135 Within a polymirobial 
biofilm, P. aeruginosa enhances USA300 MRSA 
virulence.136  Substance P is released in sweat 
during stress and increases the virulence of 
Gram-positive skin bacteria, namely S. aureus and 
S. epidermidis.95,96 Thus, the effect of stress on the 
skin microbiota might be twofold: dampening the 
host defense to infection and causing changes to 
the microenvironment that make it more ideal 
for pathogens.124 The resultant dysbiosis can 
exacerbate itch (i.e., “stress aggravated itch”) 
(Table 2).

The amygdala. Itch encompasses sensory-
discriminative and affective-motivational aspects 
and undergoes extensive processing in the higher 
brain centers.119,125 The amygdala is involved 
in pain, especially in the emotional-affective 
aspects of pain perception.144 The central nucleus 
of the amygdala (CeA) is commonly called the 
“nociceptive amygdala”145 and receives peripheral 
pain signals via the parabrachial nucleus.146 The 
role of amygdala in itch has also been shown 
in animal studies.147 A recent study noted 
that scratching was suppressed after blocking 
itch-mediating spinal neurons connected to the 
spinoparabrachial pathway.148 Additionally, an 

animal functional MRI (fMRI) study demonstrated 
amygdala activation during itch stimuli.149 The 
findings suggest that itch signals are delivered 
by both the spinothalamic pathway and the 
spinoparabrachial-CeA path. Injection of 
muscimol (γ-aminobutyric acid agonist) to the 
amygdala appeared to minimize the scratching 
elicited by the injection of serotonin to the cheek, 
suggesting a modulatory role of the amygdala in 
itch processing.150 Chronic stress brings functional 
and configurational changes in the amygdala 
(central sensitization) (Figure 3).151 This change 
might influence itch processing in the brain, 
which might explain why stress can worsen itch 
in individuals with chronic itch.152,153 Studies 
suggest that the amygdala itself is susceptible to 
microbial influences.154 Most convincingly, data 
from germ-free (GF) mice showed hyperactivity 
in the amygdala transcriptome in the absence 
of microbiota.155,156 This hyperactive state is in 
line with the altered pain sensitivity157 and stress 
response in GF mice.158,159

Currently, it is not clear how microbial signals 
navigate through the skin–brain axis to reach 
the amygdala specifically; however, there are 
some strong candidate paths, including the blood 
stream (circulation) and the spinal cord.112,154,160

 
CONCLUSION AND FUTURE PERSPECTIVES

Increased recognition and understanding of 
the presence and functionality of the microbiota 
has changed what we know about the human 
body. Cutaneous microbiota appear to have a 

diverse and far-reaching influence on human 
physiology by calling upon the host nervous 
system. Bacteria produce metabolites, toxins, 
and structural components that are recognized 
by peripheral and central neurons via matching 
receptors. Microbiota also appear to indirectly 
affect neural function by causing endocrine 
(e.g., keratinocytes) and immune cells to 
transmit signals (e.g., cytokines, proteases). 
Itch is a prototypic sensory neural function, and 
microbiota appear to propel the itch–scratch 
cycle.

Some descriptive studies have differentiated 
the microbiota found in itchy skin versus those 
of healthy skin. While dysbiosis is found in 
various pathologies, their presence raises a 
“chicken-or-the-egg” type question in that it 
remains unclear if dysbiosis leads to disease or the 
underlying disease results in microbial imbalance. 
To differentiate cause and effect, a deeper and 
more mechanistic (functional) understanding 
of the skin microbiota’s role in itch is required. 
Increased understanding will help us find 
microbiological markers in itchy conditions and 
develop more effective therapeutics that utilize 
host–microbiota relationship. The gut and skin 
are uniquely related in function, and numerous 
studies link gut microbiota to skin homeostasis 
(skin–gut axis or skin–gut–brain axis).35,161–164 

Commonalities have also been found between 
itch transition in the skin and neural signaling 
in the lower intestinal tract, which raises the 
question of whether intestinal microbiota also 

FIGURE 4.  Two main approaches of controlling the human skin microbiota for the itch control. Topical pre- and probiotics 
target to increase the number of advantageous bacteria (green) and reduce pathogens (red). Skin microbial transplant is a 
new approach that transfers beneficial microbiota from healthy skin to itchy and dysbiotic skin.167
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play a role in itching.165,166

The interplay between the skin microbiota 
and itch is an emerging area of research with 
many potential areas of focus for therapeutic 
development: 1) Whole microbiota transplant, 
a process that offers microbiota from healthy 
donors to patients with significant skin dysbiosis, 
such as AD; 2) Topical probiotics to increase or 
introduce advantageous microbiota in patients, 
especially at a critical age for immune and limbic 
brain wiring; 3) Topical prebiotics to stimulate 
beneficial skin micrbiota, or biomass or dead 
extracts of nonpathogenic bacteria to antagonize 
substance P; and 4) Studies on host–microbiota 
interplay that analyze microbial metabolites, 
re-imposing commensal microbial activity by 
offering signaling molecules (Figure 4). 

In future years, we might see topical 
microbiota modulator cosmetics/transdermal 
drugs emerge that improve our health as well as 
our appearance.
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